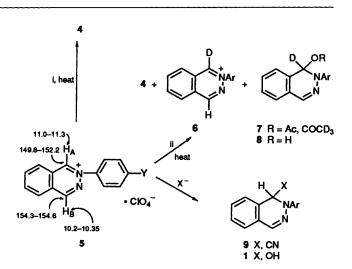

N-Arylphthalazinium Cations: Synthons for Biphthalazinylidenes via Endocyclic Phthalazinium Ylide Intermediates

Richard N. Butler* and Carmel S. Pyne

Chemistry Department, University College Galway, Ireland

Treatment of 2-aryl-1-hydroxy-1,2-dihydrophthalazines with HClO₄ in MeCN gave 2-*N*-arylphthalazinium cations as perchlorate salts. These, when heated with NaOAc in MeCN gave good yields of biphthalazinylidenes *via* an endocyclic 2-arylphthalazin-2-ium-1-ide intermediate. The presence of the ylide intermediate is supported by deuterium protium exchange at C-1 in the phthalazinium cation. At ambient temperature in water some nucleophiles added to the cations to give 1-substituted-2-aryl-1,2-dihydrophthalazines.

Recently we reported¹ the first biphthalazinylidenes 4 obtained by heating the 1-hydroxy-1,2-dihydrophthalazines 1 with acetic acid in acetonitrile. The ylidenes proved to be particularly interesting because of the pure *trans*-folded nature of the alkene moiety of the ylidene linkage.¹ We proposed the mechanism outlined in Scheme 1 as the route to the ylidenes. This involved



Scheme 1 Reagent: i, HOAc in MeCN

a phthalazinium cation 2 which was deprotonated to the reactive phthalazinium ylide intermediate 3 which reacted with the precursory cation 2 to give the ylidene. The proposed mechanism was supported by reactions with the additives, such as sulfur, dimethyl acetylenedicarboxylate and N-phenyl-maleimide. These gave new ylidene products which were consistent with reactions between the additives and intermediates, such as 2 and 3, but they were not conclusive. We present results herein which lend support for the proposed mechanism, because they establish the existence of the species 2 and 3 and show that together they can give rise to high yields of the ylidenes 4.

Results and Discussion

The cations 2 should be stable since they have the 10π naphthalene aromatic electronic structure. We isolated these cations in high yields as crystalline solid perchlorate salts 5 (Scheme 2) by treating compounds 1 with perchloric acid in acetonitrile followed by precipitation with ether (Table 1). The salts 5 were identified from microanalysis, 270 MHz proton and carbon-13 NMR spectra which proved their structure. All of the required signals were clearly identifiable and there was no serious overlap. In particular the C=N carbons with their protons H_A and H_B stood out in the proton and carbon spectra

Scheme 2 Reagents: i, NaOAc in MeCN; ii, NaOAc-DOAc in MeCN. Y = a MeO; b Me; c H; d Br; e NO₂; f Cl. Some key proton and carbon NMR shifts shown

(Fig. 1) and the related signals were identified by selective proton decoupling during the carbon-13 NMR spectral measurements. When the salts 5 were heated with one mol of sodium acetate under anhydrous conditions in acetonitrile the ylidenes 4 were readily obtained in yields which were comparable and, in most cases, better than the yields obtained by heating compounds 1 with acetic acid.¹ This reaction with the salts 5 provided a cleaner and better route to the ylidenes and side reactions which were encountered with acetic acid did not interfere. For example, the p-NO₂ derivative 4e (Ar = p- $NO_2C_6H_4$ -) could not be made previously because of complicated equilibria involving the acyclic aldehyde form of compound 1e which gave quite different chemistry on treatment with acid.² However, compound **4e** was obtained readily by heating compound 5e with NaOAc in acetonitrile (Table 1). When deuterioacetic acid was introduced into the reactions of 5 with NaOAc in acetonitrile and the starting material 5 recovered before the full yield of ylidene 4 built up, significant deuterium exchange at H_A in the cation was observed using proton and carbon-13 NMR spectra (Fig. 1). This exchange at H_A occurred only in presence of NaOAc and on heating. It was most effectively seen with 2 mol of CD₃CO₂D present. The salts 6 recovered from these reactions showed small amounts of contamination ($\leq 10\%$) from compounds 7 and 8 due to addition of acetic acid and this could not be avoided. Indeed treatment of the cations 5 with the nucleophiles such as OH⁻ or CN⁻ at ambient temperatures in aqueous solutions gave high

 Table 1
 Phthalazinium salts and ylidenes

Compound	M.p.ª/°C	Yield (%)	Microanalyses (%), Found (required)					
			c	н	N	Compound	M.p."/°C	Yield' (%)
5a	224-225	98.5	53.7 (53.5)	3.9 (3.9)	8.2 (8.3)	4a	232-233	48 (58) ^d
5b	170-171	91	56.1 (56.2)	4.2 (4.1)	8.7 (8.7)	4b	256-257	82.5 (60)
5c	213-214	80	55.0 (54.8)	3.5 (3.6)	9.05 (9.1)	4c	230-231	71 (48)
5d	209-210	88	43.5 (43.6)	2.9 (2.6)	7.3 (7.25)	4d	245-246	87 (49)
5e	252-253	98.4	47.5 (47.8)	2.6 (2.85)	11.7 (11.95)	4 e	282-283	60 — ́
5f	180-181	91.2	49.7 (49.3)	3.0 (2.9)	8.2 (8.2)	4f	252-253	83 (48)

^a From acetone-Et₂O. ^b Ref. 1. ^c Balance was recovered 5. ^d Parentheses contain yields from treating compounds 1 with HOAC in MeCN (Ref. 1).

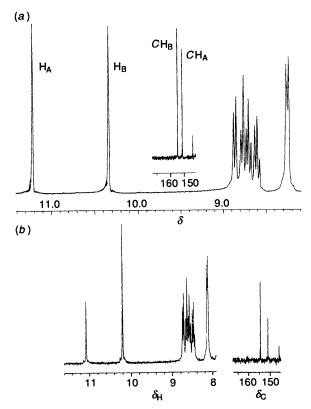


Fig. 1 (a) Lower aromatic region of the proton and carbon-13 (inset) NMR spectra of 5c in $(CD_3)_2SO$; (b) The same regions for a sample of 5c recovered from being heated with NaOAc and DOAc in MeCN during which a 40% yield of 4c was formed

yields of the products 1 and 9 from simple addition of the nucleophile in a reaction that can be synthetically useful.

The exchange results (Fig. 1) suggest that the endocyclic ylide 3 is present in anhydrous hot solutions of the cation 5 and sodium acetate and that such solutions containing the species 5 and 3 give good yields of the ylidenes 4. As far as we are aware,³ this is the first report of an endocyclic phthalazinium ylide intermediate. Deuterium-hydrogen exchange has been reported³ for substituted amino-pyridazines and pyridazinones and an endocyclic pyridinium ylide is involved in the ready deuterium-hydrogen exchange which occurs at C-2 and C-6 of the pyridinium system.^{4.5} There are reports of endocyclic quinolinium⁶ and azolium ylides^{7.8} and recently 1,3-di-(1-

nitrogen heterocyclic systems containing the moiety $^+\dot{N}=C^-$. These systems can also be referred to as ylidenes if a non-octet carbene form

adamantyl)imidazolium-2-ylidene† has been described as the first 'bottleable' carbene.⁹

Experimental

M.p.s were measured on an Electrothermal apparatus. IR spectra were measured for Nujol mulls with a Perkin-Elmer 983 G spectrophotometer. NMR spectra were measured on a JEOL JNM-GX-270 instrument with tetramethylsilane as internal reference and deuteriochloroform or hexadeuteriodimethyl sulfoxide as a solvent. The substrates 1 were prepared as previously described.¹

N-Arylphthalazinium Salts 5.—Typically, a solution of compound 1c (0.5 g, 2.2 mmol) in acetonitrile (10 cm³) was treated with an equimolar quantity of aqueous perchloric acid (73%, BDH), (0.184 cm³, 2.2 mmol) and the mixture was stirred for 5 min and treated with diethyl ether causing precipitation of 5c, m.p. 213–214 °C (from acetone–diethyl ether) (80%); $\delta_{\rm H}[({\rm CD}_3)_2{\rm SO}]$ 7.86–7.93 (m, 3 H, N-Ph, meta and para protons), 8.19–8.30 (m, 2 H, phthalazine 6-H, 7-H), 8.65–8.99 (m, 4 H, phthalazine 5-H, 8-H, N-Ph, ortho Hs), 10.33 (s, 1 H, H_B) and 11.18 (s, 1 H, H_A); $\delta_{\rm C}$ 143.3, 123.9, 130.1 and 127.5 (N-Ph, C-1', C-2', C-3', C-4', resp.), 128.2 (C-4a), 131.2, (C-8a), 136.4, 128.35, 131.6 and 139.7 (phthalazine C-5, C-6, C-7, C-8, resp.), 151.08 (C-1, *i.e.* CH_A, Fig. 1) and 154.6 (C-4, *i.e.* CH_B, Fig. 1).

Biphthalazinylidenes 4.—Typically a solution of 5c (0.25 g, 0.825 mmol) in dry acetonitrile (10 cm³) was treated with anhydrous sodium acetate (70 mg, 0.825 mmol) and the mixture was stirred under reflux for 3 h. On cooling compound 4c (71%) separated. Treatment of the acetonitrile mother liquor with diethyl ether resulted in recovery of 5c and no other compounds were encountered. For substrate 5e the mixture was stirred under reflux for 3 h and cooled to give the previously unattainable red coloured derivative 4e, (60%) as a mixture with compound 1e (37%). The ylidene 4e was removed in chloroform in which 1e is insoluble; 4e, m.p. 282–283 °C (from MeCN) (Found: C, 66.7; H, 3.5; N, 16.5. C₂₈H₁₈N₆O₄ requires C, 66.9; H, 3.6; N, 16.7%).

When aqueous solutions of NaOH were treated with equimolar quantities of compounds **5** and the mixtures stirred at ambient temperatures for 30 min, the compounds **1** (\leq 90%) separated and were recrystallised from MeCN. Similar treatment of aqueous solutions of **5** (0.98 mmol, 10 cm³) with aqueous KCN (0.98 mmol, 10 cm³) gave compounds **9**; *e.g.* **9**c, m.p. 154–155 °C (EtOH) (94%) (Found: C, 76.8; H, 4.6; N, 18.0. C₁₅H₁₁N₃ requires C, 77.25; H, 4.7; N, 18.05%); $\delta_{\rm H}[(\rm CD_3)_2$ -SO] 7.2 (s, 1 H, 1-CH), 7.24–7.26 (m) and 7.54–7.74 (m, 9 H, Ar) and 8.20 (s, 1 H, 4CH); $\delta_{\rm C}$ (with multiplicity for off-resonance decoupling), 45.3 (d, C-1), 115.8 (d, NPh–C–2'), 123.9(s), 126.25 (s, C-4a, C-8a); 116.4 (s, CN), 122.7, 125.8, 129.3, 130.4 and 131.8 (all ds, ArCHs), 139.5 (d, C-4) and 145.0 (s, N-Ph, C-1').

[†] The name 'ylide' is widely used (ref. 5 and references therein) for

N-C;, is drawn. Herein they are referred to as ylides and drawn in the octet form.

References

- 1 R. N. Butler, A. M. Gillan, F. A. Lysaght, P. McArdle and D.
- Cunningham, J. Chem. Soc., Perkin Trans. 1, 1990, 555. 2 R. N. Butler, A. M. Gillan, J. P. James, P. McArdle and D. Cunningham, J. Chem. Res., (S), 1989, 62; (M), 1990, 0523.
- 3 cf. M. Tisler and B. Stanovnik, in Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 3, p. 22. 4 J. A. Zoltewicz and C. L. Smith, J. Am. Chem. Soc., 1967, **89**, 3358.
- 5 T. L. Gilchrist, in Heterocyclic Chemistry, Pitman Publishing Ltd., London, 1985, pp. 252-253.
- 6 H. Quast and E. Frankenfeld, Angew. Chem., Int. Ed. Engl., 1965, 4,

- 7 H. Quast and S. Hünig, Chem. Ber., 1966, 99, 2017. 8 A. Takamizawa, H. Harada, H. Sato and Y. Hamashima, Heterocycles, 1974, 2, 521.
- 9 A. J. Arduengo III, R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1991, 113, 361; cf. R. Dagani, Chem. Eng. News, 1991, 19.

Paper 2/04523K Received 21st August 1992 Accepted 17th September 1992